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 ABSTRACT 

 

This study represents an effort to develop Single-Column Model (SCM) and Cloud-

Resolving Model (CRM) large-scale forcing data from a sounding array in the high latitudes.  An 

objective variational analysis approach is used to process data collected from the Atmospheric 

Radiation Measurement program (ARM) Mixed-Phase Arctic Cloud Experiment (M-PACE), 

which was conducted over the North Slope of Alaska in October 2004.  In this method, the 

observed surface and top of atmosphere measurements are used as constraints to adjust the 

sounding data from M-PACE in order to conserve column-integrated mass, heat, moisture, and 

momentum.  Several important technical and scientific issues related to the data analysis are 

discussed.    

It is shown that the analyzed data reasonably describe the dynamic and thermodynamic 

features of the Arctic cloud systems observed during M-PACE.  Uncertainties in the analyzed 

forcing fields are roughly estimated by examining the sensitivity of those fields to uncertainties 

in the upper-air data and surface constraints that are used in the analysis.  Impacts of the 

uncertainties in the analyzed forcing data on SCM simulations are discussed.  Results from the 

SCM tests indicate that the bulk features of the observed Arctic cloud systems can be captured 

qualitatively well using the forcing data derived in this study and major model errors can be 

detected despite the uncertainties that exist in the forcing data as illustrated by the sensitivity 

tests.  Finally, the possibility of using the European Center for Medium-Range Weather 

Forecasts (ECMWF) analysis data to derive the large-scale forcing over the Arctic region is 

explored. 
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1. Introduction 
 

The Single-Column Model (SCM) and Cloud-Resolving Model (CRM) are two useful 

modeling tools in the evaluation and development of physical parameterizations used in climate 

models [Randall et al., 1996].  This kind of modeling study has been largely scarce for the high 

latitudes, owing to the lack of appropriate large-scale forcing data, i.e., the vertical velocity and 

horizontal advective tendencies of atmospheric state variables, which are required to drive SCMs 

and CRMs.  The forcing data used in a few available SCM/CRM studies in the Arctic regions 

[e.g., Pinto et al., 1999; Jiang et al. 2000] are usually from output of operational numerical 

weather prediction (NWP) models because there were no suitable sounding arrays that could be 

used to derive the required observed forcing data.  Zhang et al. [2001] showed that the horizontal 

winds from NWP models are generally more homogeneous than those from sounding data, 

which could result in a much weaker wind divergence than that from observations.  It is also 

known that the NWP model-derived forcing data are largely affected by the deficiencies of the 

model physical parameterizations used in generating the data.  As demonstrated by Xie et al. 

[2003] and Morrison and Pinto [2004], the forcing data directly obtained from the NWP model 

contain large errors.  In order to reduce errors in the NWP model-derived forcing data, several 

correction algorithms were recently developed by using available observations to constrain the 

NWP data [e.g., Xie et al., 2004; Morrison and Pinto, 2004].   The constrained NWP forcing data 

are useful especially for statistical studies of SCM/CRM simulations, but they are clearly less 

accurate than those derived from a well-defined sounding array [Xie et al., 2004].   

As an attempt to improve the representation of Arctic clouds and their interaction with 

radiation in present climate models, the U. S. Department of Energy (DOE) Atmospheric 

Radiation Measurement program (ARM) launched its Mixed-Phase Arctic Cloud Experiment 

(M-PACE) field campaign over the North Slope of Alaska (NSA) in October 2004 [Harrington 

and Verlinde, 2004; Verlinde et al., 2005].  During the field campaign, detailed information 

about Arctic clouds and cloud microphysical properties were measured using the ARM 

Millimeter Wavelength Cloud Radar (MMCR), Micropulse Lidar (MPL), Laser Ceilometers, and 

three instrumented aircraft.  A sounding array with four radiosonde stations (the Barrow, 

Atqasuk, Oliktok Point, and Toolik Lake sites represented by the large star symbols in Figure 1) 

was used to provide six hourly sounding measurements for most of the M-PACE period and 
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 therefore allow for calculation of the large-scale SCM/CRM forcing data.  Basic surface 

meteorology variables and surface radiative fluxes were available at two ARM ground base sites 

at Barrow and Atqasuk and at the Pacific Northwest National Laboratory (PNNL) Atmospheric 

Remote Sensing Laboratory (PARSL) ARM-like remote sensing facility at Oliktok Point. The 

National Aeronautics and Space Administration (NASA) Terra and the National Oceanic and 

Atmospheric Administration (NOAA) -15 and -16 satellites provided satellite measurements of 

broadband radiative fluxes at the top of the atmosphere (TOA). 

The M-PACE field campaign provides the first chance to derive the SCM/CRM forcing 

data from a sounding network in the Arctic region.  For this purpose, the constrained variational 

analysis approach developed by Zhang and Lin [1997] is used in this study.  This method has 

been successfully used in processing ARM data collected at its mid-latitude Southern Great 

Plains (SGP) site [Zhang et al., 2001].   The basic idea of the analysis approach is to use domain-

averaged surface and TOA observations as the constraints to adjust the balloon soundings in 

order to satisfy the conservation of column integrals of mass, heat, moisture, and momentum.  

The resulting analyzed data are dynamically and thermodynamically consistent. 

It should be noted that the data density over the NSA region is still much lower than that 

in other ARM field campaigns conducted at its SGP site despite the great effort made by M-

PACE.   For example, balloon soundings were only available 4 times per day over 4 sounding 

stations in M-PACE while they were available 8 times per day over a well-defined sounding 

network of 5 stations during the ARM SGP Intensive Operation Periods (IOPs).  In addition, 

there were hourly horizontal wind data from seven wind profiler stations within the SGP domain 

to supplement the sounding measurements (see Figure 4 in Zhang et al. 2001).   This indicates 

that the background field used in the variational analysis could play a more important role in the 

analysis of MPACE data due to the low data density.  Note that a background field is needed in 

the analysis for filling missing soundings and interpolating data onto the analysis grid points that 

do not overlap with the sounding stations. Surface data were rather sparse and were only 

available at three stations in M-PACE.  Moreover, some of the surface fields required by the 

variational analysis were either not available (e.g., sensible and latent heat fluxes) or not 

accurately measured (e.g., surface precipitation), as discussed later.  This suggests potentially 

large uncertainties in the domain-averaged surface constraints that are used in the variational 

analysis.  It should be noted that the M-PACE observational network was designed on a 
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 challenging location along the North Alaskan coast.  The low cloud systems that affected the 

NSA site were often advected from nearby oceans during the experiment period.  Thus, it might 

be difficult for the M-PACE observational network to fully capture the large-scale characteristics 

of the observed Arctic clouds.   

In this study, we try to alleviate these difficulties by carefully dealing with all the 

technical details in the data analysis.  In particular, we attempt to address the following important 

technical and scientific issues associated with the analysis: 1) Can the required domain-averaged 

constraints be reasonably derived from surface data collected at only three ground stations? 2) 

How sensitive are the analyzed forcing data to uncertainties in the upper-air sounding data and 

surface constraints? 3) What is the impact of those uncertainties in the analyzed forcing fields on 

SCM simulations? 4) Can physically important model errors be detected despite uncertainties in 

the forcing data?  Moreover, given the difficulties to obtain data from a sounding array in the 

Arctic, it is important to investigate how to use NWP analysis data to derive useful large-scale 

forcing for SCM/CRM studies.  This issue is also discussed in the study.  A thorough discussion 

of the above issues will not only help SCM/CRM modelers to better use the analyzed data but 

also provide useful information for planning future field experiments. 

The technical details of the objective analysis of M-PACE observations are described in 

Section 2.  Basic features of the large-scale dynamic and thermodynamic structures associated 

with the Arctic clouds observed during M-PACE are discussed in Section 3.  Section 4 shows 

results from the sensitivity tests, which are conducted to help understand the uncertainty of the 

derived forcing data due to uncertainties in the upper-air input data and surface constraints.  The 

impact of the uncertainties in the forcing data on SCM simulations is discussed in Section 5.  The 

possibility of using the European Center for Medium-Range Weather Forecasts (ECMWF) 

analysis data with the M-PACE constraints to derive the large-scale forcing is explored in 

Section 6.  Section 7 gives summary and discussions. 

 

2.  Analysis of M-PACE observations 

The constrained variational objective analysis approach developed by Zhang and Lin 

[1997] is used for the objective analysis of the data collected during M-PACE, which started on 

00Z 5 October and ended on 12Z 22 October 2004 at the ARM NSA site.  The technical details 

of this approach and its implementation for processing the data collected at the ARM SGP site 
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 have been described in the work of Zhang and Lin [1997] and Zhang et al. [2001].  In this 

section, we first briefly review the approach and then discuss the details of how it is applied to 

analyze the M-PACE data.  

 

2.1 The constrained variational analysis approach 

The constrained variational analysis of Zhang and Lin [1997] was designed for deriving 

large-scale vertical velocity and advective tendencies from sounding measurements over a 

network with a small number of stations.  This method uses the domain-averaged surface and 

TOA observations as constraints to adjust atmospheric state variables from soundings by the 

smallest possible amount to conserve column-integrated mass, moisture, static energy, and 

momentum so that the final analysis data set is dynamically and thermodynamically consistent.  

The column constraints can be obtained by vertically integrating the governing equations of the 

large-scale atmospheric fields: 
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In the above, V is the wind, s = CpT +gz is the dry static energy, Cp is heat capacity at constant 

pressure for dry air, g is gravitational acceleration, q is the mixing ratio of water vapor, ql is the 

cloud liquid and ice water content, R is the net downward radiative flux at TOA and at the 

surface (SRF), s is the surface wind stress, Prec is precipitation, L is the latent heat of 

vaporization, SH is the sensible heat flux, Es is the surface evaporation, f is Coriolis parameter,  

is geopotential height,  K


is unit vector in the vertical direction,  ps is the surface pressure, and pt 

is the TOA pressure.   
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 The final analysis product is derived by minimizing the cost function: 
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with (1) – (4) as strong constraints, where superscript “*” denotes final analysis and subscript 

“o” denotes initial analysis.   is the weighting function related to error estimates in the initial 

input.  In this study, we use the objective analysis scheme described in Cressman [1959] to 

obtain the initial analysis field from the M-PACE sounding array.  The Cressman scheme 

requires a background field for filling missing soundings and interpolating data onto the analysis 

grids that do not overlap with the sounding stations.  The rationales of our analysis strategy and 

implementation details of the variational analysis to process M-PACE data are discussed below. 

 

2.2 Implementation details of the variational analysis to M-PACE observations 

Figure 1 displays the objective analysis domain and analysis grid points (A1-A6, solid 

circles) defined for analyzing the M-PACE data.   It is seen that the analysis domain is different 

from the M-PACE sounding network. In our analysis, the Toolik Lake site is not used as one of 

the analysis grid points because this station rests on a much higher location (760 m) than the 

other three sounding stations (less than 30 m), and using this site could cause problems in 

obtaining the domain-averaged quantities required by the variational analysis.  Note that it is not 

necessary (although it is common) to use ground sounding stations as the analysis grid points in 

an objective analysis because sounding balloons can drift away from their ground stations 

anyway while ascending.  In the defined domain, the analysis grid points A1, A2, and A5 overlap 

with the sounding stations at the Barrow, Atqasuk, and Oliktok Point sites, respectively.   In 

order to still make use of the sounding information collected from the Toolik Lake site, we 

define an extra analysis point (A4) with the surface elevation of 50 m as shown in Figure 1.  

Following Zhang et al. [2001], we also add another two auxiliary grid points at the middle of the 

two long sides of the domain (i.e., A3 and A6 in Figure 1) to improve the linear assumption, 

which is used in the variational analysis to derive the fluxes into or out of the analysis domain.   

The grid points A1-A6 consist of the final objective analysis grid points used in this study and 

the finial analyzed fields represent an average over the domain encompassed by these analysis 
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 grid points, which is about 230 km in the longitudinal direction and 100 km in the latitudinal 

direction. 

M-PACE conducted two radiosonde Intensive Operational Periods (IOPs) to measure the 

vertical profiles of temperature, relative humidity, and horizontal winds every six hours at the 

four ARM sounding stations.  The first radiosonde IOP was from 00Z 5 October to 00Z 10 

October 2004 and the second one from 00Z 14 October to 12Z 22 October 2004.  Between the 

two IOPs, sounding data were available once a day at the Barrow and Atqasuk sites. To 

complement the ARM observations, the 12-hourly soundings at the National Weather Service 

(NWS) Barrow station are also used in the analysis in order to maximize the use of the limited 

observations available in the Arctic regions.  Similar to Zhang et al. [2001], these measured 

upper-air data are first analyzed using the analysis scheme of Cressman [1959] but with 

background fields from 0.5 x 0.5 degree ECMWF analysis data, whose grid points are shown by 

the “plus” symbols in Figure 1.   

As discussed earlier, the accuracy of the background data could play a more important 

role in the objective analysis of M-PACE data due to the low data density in the NSA region.  

For the M-PACE period, we have archived NWP model analysis data from both ECMWF and 

NCEP (the U. S. National Center for Environmental Prediction).  The NWP models used to 

generate the analysis data are the ECMWF T511L60 (~ 40km) model [ECMWF, 2004] and the 

NCEP ETA-12 (12 km and 60 Levels) mesoscale model [Rogers et al., 2001] (courtesy of Dr. 

Anton Beljaars of ECMWF and Dr. Eric Rogers of NCEP).  The 12-hourly soundings at the 

NWS Barrow station were assimilated into both the ECMWF and NCEP data analysis system.  

An initial investigation indicates that the ECMWF analysis has smaller errors than the NCEP 

ETA analysis over the ARM NSA site in comparison with the M-PACE data.  Figures 2a-d give 

the root-mean square (RMS) error of the ECMWF analysis and the ETA analysis from the M-

PACE sounding observations over the Barrow station for horizontal winds, temperature, and 

relative humidity, respectively.  Similar results are seen at the other sounding stations.  For the 

M-PACE period, both analyses typically represent well the temporal evolutions of these fields 

(not shown).  The RMS error of the ECMWF analysis is typically less than 1.5 m s
-1

 in 

horizontal winds, 1 K in temperature, and 13% in relative humidity.  The ETA analysis shows 

much larger errors in the horizontal winds than the ECMWF analysis. The errors in the 

temperature and relative humidity are comparable for these two model analysis datasets.  As 
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 shown in Xie et al. [2006a], the errors in the ECMWF analysis are partially related to the errors 

in its simulated cloud systems during M-PACE.  However, it is not clear why the ETA analysis 

has much larger errors in the horizontal winds than the ECMWF analysis.  This could be a 

subject of future study. 

The required column constraints can be obtained from measurements at the two ARM 

ground-based sites at Barrow and Atqasuk and the PARSL remote sensing facility at Oliktok 

Point (Figure 1).  The ARM surface instruments and the PARSL ARM-like remote sensing 

facility provided measurements of surface precipitation, pressure, horizontal winds, temperature, 

relative humidity, surface broadband upwelling and downwelling radiative fluxes, column 

precipitable water, and cloud liquid water path.   The radiative fluxes at TOA are from the 1 x 1 

degree analysis of the NASA Terra and the NOAA-15 and NOAA-16 satellite data.  The 

algorithm used to create the TOA radiative fluxes is described in Minnis et al. [2001].  It should 

be noted that the ARM observed precipitation could be overestimated due to blowing snow.  In 

the analysis, we merged the ARM-observed surface precipitation data with those measured at the 

National Weather Service (NWS) Barrow station.  The ARM precipitation record is multiplied 

by a constant, which is equal to the ratio of a “weighted” average of the ARM time mean 

precipitation and NWS time mean precipitation to the average precipitation from the ARM data 

for the MPACE.  This scale factor is computed at Barrow and applied to other stations.  In the 

current analysis, more weights (0.75) were given to the NWS data, which were thought to be 

more reliable and more consistent with the information recorded in the experiment synoptic logs 

during M-PACE (Dr. James Pinto, University of Colorado, personal communication).  It should 

be noted that the observed surface precipitation contained rather large uncertainty even with the 

correction based on the NWS data, which could experience the same problems with blowing 

snow as the ARM observations.  In section 4, we conduct a sensitivity test to demonstrate how 

this impacts analyzed forcing fields.    

Since the observed surface sensible and latent heat required by the variational analysis are 

not available, these fields are currently calculated by: 

 

HFLX  = flnd * HFLX_bulk_land + (1-flnd) * HFLX_EC_ocean   (6) 

 



 10 

 where HFLX represents surface sensible heat flux (SH) or latent heat flux (LH).  flnd is the land 

fraction of the analysis domain.  HFLX_bulk_land represents the heat fluxes over land.  They are 

calculated using the bulk flux algorithm described by Fairall et al. [1996] with some 

modifications so that it can be suitable for use over a surface covered by snow or ice, which is 

the case for M-PACE.   All the required inputs for the bulk flux algorithm, such as surface 

temperature, moisture, horizontal winds, and pressure, are from M-PACE observations.  The 

details of the implementation of the bulk flux algorithm to M-PACE data were described in Xie 

et al. [2006a].  HFLX_EC_ocean denotes the ECMWF model-produced ocean heat fluxes.  We 

include the heat fluxes over ocean in order to partially retain the important influence of the 

surface fluxes over open ocean on the observed boundary-layer clouds, which were formed over 

the open ocean to the northeast of the Alaskan coast and then advected over the NSA site.   

To obtain the domain-averaged quantities for other fields, we first interpolate the 

observations at the three ARM ground-base stations (A1, A2, and A5) onto the three extra 

analysis grid points (A3, A4, and A6) using an interpolation scheme described in Barnes [1964].   

The weighting function in the Barnes scheme is dependent on the distance between an analysis 

grid point and the measurement stations.  This could help reduce the derived domain-average 

quantities overweighted by data measured at Barrow and Atqasuk along the west boundary of the 

domain.  A simple arithmetic averaging was then used to obtain the domain-averaged quantities.   

Can measurements at the three stations represent well the temporal and spatial variations 

of these surface fields over the entire domain?  Given the data availability at the NSA, it is 

impossible to study this issue from observations.  In this study, we use the 0.5 x 0.5 degree 

ECMWF model output data to help understand the problem and roughly estimate uncertainties 

that could be introduced in the domain-averaged fields due to the low density of surface data.  

For this purpose, we constructed domain-averaged quantities from the model data in two 

different ways.  One set of the domain-averaged quantities was obtained by just averaging data at 

the three model land grid points nearest to Barrow, Atqasuk, and Oliktok Point, and the other one 

was obtained by averaging all model land grid points within the analysis domain.   

Figures 3a-d compare the domain-averaged results constructed by these two methods for 

surface precipitation, net surface radiation, sensible heat flux, and latent heat flux, respectively.  

In the figure, we use AVG3PTS and AVGALL to represent the two model-constructed datasets, 

respectively.  Note that negative values in sensible and latent heat fluxes represent heat transport 
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 from atmosphere to surface.  It is seen that the temporal variability of these two datasets is in 

excellent agreement with correlation coefficient over 0.95 for precipitation, 0.97 for sensible heat 

flux, 0.99 for latent heat flux, and 0.99 for net surface radiation.  For the magnitude of these 

fields, however, noticeable differences are seen in surface precipitation, sensible heat flux, and 

latent heat flux, indicating a quite large spatial variability of these fields.  The time-mean values 

over the entire M-PACE period for these two datasets (the numbers behind legend labels in the 

Figures 3a-d) suggest that averaging over only the three stations might underestimate 

precipitation by about 20% and overestimate sensible and latent heat fluxes by about 20% and 

40%, respectively.  It is interesting to see that the two constructed datasets have a good 

agreement in the magnitude of surface net radiation, in which AGV3PTS only slightly 

overestimates AVGALL by about 6%.   

It should be noted that the differences shown in these two constructed datasets are solely 

based on the ECMWF model forecasts and may not fully reflect those in the real world because 

the model does not have the true world’s small-scale variability.  Figure 3 only provides some 

useful information for us to roughly estimate potential errors in the domain-averaged fields 

resulting from the lack of dense surface observations over the NSA region.  The above 

discussions indicate that the errors in the domain-mean quantities introduced by using only three 

stations are not likely to affect the temporal evolution of analyzed forcing fields but may have 

impacts on the magnitude.   They also suggest the need to have a denser surface observation 

network in order to improve the quality of the domain-averaged quantities, which are not only 

used as the constraints in the variational analysis but also used as the observational data to 

evaluate model performance.    

 

3. Analyzed fields 

Figures 4a-d show the time-pressure cross sections of analyzed horizontal winds, 

temperature, and water vapor mixing ratio, respectively.  For the period 5 to 13 October, the 

upper-air circulations were typically characterized by the west-northwesterly flow in the middle 

and upper troposphere and the east-northeasterly flow in the lower troposphere and near the 

surface, associated with an upper level cold trough and a strong surface high-pressure system 

centered to the northeast of the Alaskan coast.  There was a substantial temperature decrease 

below 665 hPa and a sharp moisture decrease for the period 8-13 October over the NSA site. The 



 12 

 ARM ARSCL (the Active Remotely-Sensed Clouds Locations, Clothiaux et al. 2000) data 

indicated the appearance of multilayered clouds in the mid- and low-levels during the period 6-7 

October and persistent mixed-phase boundary layer clouds during the period 8-14 October as 

shown in Figure 5a.  Frequent light snow events were reported in the ARM and NWS ground 

measurements during this period (Figure 5b).   

After 14 October, the mixed-phase boundary layer clouds started to disappear as a warm 

front moved through the area on 15-16 October and a deep ridge moved over the NSA.  The 

analyzed wind fields show that southwesterly flow prevailed in the entire troposphere except on 

late 19 October when there was an abrupt wind direction change from the southwest to the 

southeast associated with a strong warm frontal passage.  The upper-air started to warm-up and 

become moist when the warm ridge was moving into the NSA.  The significant temperature and 

moisture increase on 19 October was the result of the strong warm front approaching the NSA 

site.  This period is dry and no snow was reported except on late 19 October when the strong 

frontal system moved into the NSA from the southwest bringing deep prefrontal and frontal 

clouds and producing large snowfall (Figures 5a-b). 

The large-scale vertical velocity (omega) derived from the M-PACE observations using 

the variational analysis approach is shown in Figure 6a.  Since the tropopause in the Arctic is 

usually lower than 215 hPa, the TOA is set to 215 hPa in the variational analysis and omega is 

set to zero above this level.  The analyzed vertical velocity field generally shows strong 

downward motion above cloud top and relatively weak upward motion at low levels for the 

period 6-14 October where multilayered clouds and boundary layer clouds occurred.  The 

downward motion is much stronger for the period 8-14 October when only low-level clouds 

appeared compared to the earlier period.  The strong downward motion limits the vertical 

extension of clouds and confines clouds in the low levels.  After 14 October, episodes of strong 

downward motion and weak upward motion are shown in the analyzed omega field.  The strong 

upward motion on late 19 October is associated with the strong frontal passage mentioned earlier 

and consistent with the large front-produced snow as seen in Figure 5b.   

Figure 6b shows analyzed total advective tendencies of temperature, which includes the 

adiabatic expansion term.  The temperature tendency field is closely associated with the omega 

field.  In general, large-scale warming (cooling) corresponds to downward (upward) motion.   

From 5 October to 12 October, Figure 6b generally shows warm advective tendency in the 
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 middle troposphere associated with the strong downward motion and cold advective tendency in 

the lower troposphere due to both upward motion and horizontal cold advection (not shown).  In 

the case of the strong frontal passage on late 19 October, there is a strong advective cooling 

associated with the strong upward motion.  This is a typical dynamic and thermodynamic 

structure of a frontal cloud system.   

The moisture advection field shown in Figure 6c indicates a quite strong moisture 

convergence between 965 hPa and 515 hPa on 5 October prior to the formation of the multi-layer 

clouds.  A moisture divergence is seen during the period 8–12 October, which is consistent with 

the moisture decrease shown in Figure 4d.   This also suggests the observed boundary layer 

clouds were most likely advected into the ARM NSA site from the open ocean rather than being 

formed locally.  For the period 13-17 October, we see a moisture convergence in the analyzed 

field, which leads to the recovery of water vapor as shown in Figure 4d.  There is strong moisture 

convergence during the strong frontal passage on late 19 October, corresponding to the strong 

upward motion, cold advection, and large surface precipitation as discussed earlier. 

The consistency between the large-scale forcing and the observed cloud systems indicates 

that the large-scale dynamical fields are derived qualitatively well from the M-PACE 

observations.  In Figures 7 and 8 we further examine the components of column-integrated heat 

and moisture budgets, respectively.  For the period 5-12 October, the column radiative cooling is 

the dominant term in the heat budgets (Figure 7).  This term is offset mainly by the latent heating 

associated with surface precipitation. The overall effect leads to a slight heat loss shown in the 

local heat storage term.  After 12 October, the horizontal heat convergence becomes the 

dominant term to offset the radiative cooling, leading to an increase of local heat storage until the 

strong front passed over the NSA site on late 19 October where a large energy loss occurred in 

the local heat storage term.  The heat loss is associated with the strong horizontal cold advection 

that is partially offset by the latent heat release due to condensation.  The two heat convergence 

peaks on 15 October and early 19 October are associated with the warm fronts approaching the 

NSA site.   The sensible heat flux is a small term compared to other budget terms in the entire 

M-PACE period.   

In the moisture budgets (Figure 8), the two largest terms are the local moisture storage 

term and the horizontal moisture convergence.  Precipitation is also important, especially during 

the period of the strong frontal passage on late 19 October, where the moisture storage term 
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 shows a rapid moisture increase associated with a strong horizontal moisture convergence.  

Surface evaporation is much smaller than other terms in the moisture budgets.    

 

4.  Uncertainty in the analyzed forcing fields 

In the last section we showed that the analyzed forcing fields exhibited reasonable 

dynamic and thermodynamic structures corresponding to the observed Arctic clouds.   In this 

section we estimate the accuracy of the derived forcing data by examining the sensitivity of those 

data to potential uncertainties in the upper-air data and surface constraints used in the variational 

analysis.  For this purpose, three sensitivity tests are conducted to illustrate the impacts of 

uncertainties in upper-air data, domain-averaged surface precipitation, and surface sensible and 

latent heat fluxes on the analyzed forcing fields, respectively.  Note that these sensitivity tests are 

particularly necessary for field experiments conducted in the Arctic region because of the low 

data density there.  The sensitivity tests can provide a crude estimate of the accuracy limit in the 

derived forcing fields.  In the following discussion, the current objective analysis is considered as 

the control case and is represented by Exp0.  Table 1 lists the sensitivity tests carried out in this 

study and described below. 

The first sensitivity test (Exp1) is performed to examine the sensitivity of the forcing data 

to uncertainties in the upper air sounding data, which were obtained using a Vaisala Radiosonde 

RS92 balloon-borne sounding system. As reported in Lesht [2005], the RS92 sondes 

substantially reduce the well-known dry bias with Vaisala RS80 series of sondes, although they 

do seem to be biased dry during daytime in the upper troposphere at lower latitudes where solar 

effects are greatest.  The instrument and measurement accuracy at NSA is of about 0.5 m s
-1

 in 

the horizontal winds, 0.5 K in the temperature, and 5% in the relative humidity.  The uncertainty 

in humidity soundings could be larger when temperature is below -40C due to a slow response 

time of the instrument.   In this test, random errors are added to horizontal wind components, 

temperature, and water vapor mixing ratio fields.  These random errors are bounded by a RMS 

error of 1.5 m s
-1

 for the wind components, 0.5 K for the temperature, and 5% of the locally 

observed water vapor mixing ratio for the moisture.  Note that larger than the reported errors are 

added in the horizontal winds in order to consider scale aliasing and invalid and missing 

measurement errors due to the insufficient samplings in the field experiment.   



 15 

 The second sensitivity test (Exp2) is conducted to examine how sensitive the derived 

forcing fields are to uncertainties in the domain-averaged surface precipitation.  Zhang et al 

[2001] showed that the accuracy of the domain-averaged precipitation had the largest impact on 

the derived forcing fields.  Unfortunately, as noted earlier, considerably large uncertainties 

existed in the ARM surface precipitation measurement during M-PACE because of blowing 

snow and the lack of dense observations.  In the current analysis (Exp0), we merged the ARM-

observed surface precipitation with the precipitation data measured at the NWS Barrow station 

with three-fourths weights given to the NWS data because the latter was thought to be more 

reliable.  However, the choice of the weighting coefficients for the merging is rather arbitrary.   

In the sensitivity test, we merge the two datasets with equal weight.  Figure 5b compares the 

surface precipitation rates used in the control analysis (Pr0) and that used in the sensitivity test 

(Pr1).  It is seen that Pr1 is consistently larger than Pr0 since the ARM-observed precipitation is 

significantly larger than the NWS-observed.  The difference between Pr0 and Pr1 is much larger 

than that caused by using different numbers of stations to obtain the domain mean as shown in 

Figure 3a.   

The third test (Exp3) is to examine the sensitivity of the derived forcing data to 

uncertainties in the domain-averaged surface sensible and latent heat fluxes.  In the control 

analysis, the surface heat fluxes are an average of the fluxes from both ocean and land regions 

within the analysis domain in order to better represent these fields associated with the observed 

boundary-layer cloud systems, which were mainly driven by large sensible and latent heat fluxes 

over the open ocean and advected into the NSA site.  Preliminary SCM tests indicate that 

including the fluxes over the ocean is important for some models to correctly capture major 

features of the observed boundary layer clouds (Dr. Hugh Morrison, National Center for 

Atmospheric Research, personal communication).  As discussed in Section 2, however, all other 

domain-averaged surface fields are derived from observations at the three land stations, i.e., 

Barrow, Atqasuk, and Oliktok Point.  There is an inconsistency in deriving the domain-averaged 

quantity between surface sensible and latent heat fluxes and other variables.  In Exp3, we use the 

surface heat fluxes over land only to examine how sensitive the derived forcing fields are to this 

change.  Figures 9a-b compare the sensible and latent heat fluxes used in the control analysis 

(SH0 and LH0) and those used in Exp3 (SH1 and LH1), respectively.   The largest differences 

are seen for the periods 5–13 October where SH0 is positive, reflecting a large heat transport 
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 from the warm open ocean to the atmosphere.  Meanwhile the sensible heat flux over land 

(SH1) shows negative values during this period, consistent with the observed near-surface 

temperature inversion over land.  By including ocean grid points, LH0 is much larger than that 

averaged only over land (LH1).  It is interesting to see that the two surface heat flux datasets 

agree well with each other after 14 October.  Similar to Exp2, the difference in the sensible and 

latent heat fluxes between Exp3 and the control analysis is also much larger than that due to 

using only three stations (i.e., low density grid points on land only) to obtain the domain mean 

and thus representing a worse scenario than the uncertainties shown in Figures 3c and 3d. 

Figure 10 shows the time-pressure cross section of the derived large-scale omega fields 

from the three sensitivity tests and their difference from the control analysis.  The temporal and 

vertical distributions of the omega fields derived in these tests (Figures 10 a-c) are very similar to 

those shown in the control analysis (Figure 6a).   The omega change due to the use of the 

perturbed upper-air input data (Exp1) is quite random (Figure 10d), consistent with the random 

errors added to the state variables.  The random errors also lead to a higher temporal variability 

in the derived omega field from Exp1.  The difference in the omega field between Exp1 and 

Exp0 is typically around 1 hPa hr
-1

, which is about 20% of the typical vertical velocities in the 

control run.  This suggests uncertainties in the derived forcing data resulting from errors in the 

upper-air sounding data cannot be neglected.   

The stronger precipitation used in Exp2 results in stronger upward motion and weaker 

downward motion in the middle and lower troposphere during the precipitation periods in 

comparison with Exp0 as indicated in Figure 10e.  This is because stronger precipitation needs 

more moisture convergence into the column and therefore stronger upward motion.  The 

magnitude of the omega difference due to the change in the surface precipitation is up to 3 hPa 

hr
-1

, which is larger than that in Exp1, in which the upper-air data are perturbed.  Considering 

that the upward motion is quite weak in these weak precipitation events, the difference shown in 

Figure 10e is rather significant.  This indicates the importance of an accurate measurement of 

surface precipitation in improving the accuracy of the analyzed forcing fields.  

Compared to Exp0, the smaller sensible and latent heat fluxes used in Exp3 lead to a 

slightly stronger upward motion in mid- and low-levels and a slightly stronger downward motion 

in upper levels for the period 9-12 October, which corresponds to the largest heat flux difference 

between Exp3 and Exp0 as shown in Figure 9.   The magnitude of the omega change is less than 
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 1 hPa hr
-1

.  This small change in the omega field is partially due to the compensation between 

the change caused by sensible heat flux and that by latent heat flux.  The reduction of sensible 

heat flux and latent heat flux in Exp3 acts in different ways to the omega field.  It is seen from 

Eq. (3) that smaller sensible heat flux leads to stronger convergence of dry static energy and 

therefore stronger downward motion if other terms on the right-hand side of the equation are 

unchanged in order to keep the same local change rate of dry static energy.  Reduction of latent 

heat flux plays the same role as increase of surface precipitation, resulting in more moisture 

convergence and therefore stronger upward motion, as indicated in Eq. (2). 

 

5. Impacts on SCM simulations 

 In section 4 we discussed potential uncertainties in the derived large-scale forcing data 

due to errors in the upper-air data and the column constraints.  One important issue is how SCMs 

respond to these uncertainties in the forcing data.  Can a SCM driven by these forcing datasets 

produce similar results so that the same model deficiencies can be detected?   To address these 

issues, the SCM version of the National Center for Atmospheric Research (NCAR) Community 

Atmosphere Model version 3 (SCAM3) is used in this study.  Collins et al. (2004) provided a 

detailed description of this model.  Note that a SCM test can also be viewed as a useful modeling 

check on the quality of the derived forcing data.  In the SCM runs, the large-scale total advective 

tendencies of temperature (including the adiabatic expansion term) and moisture are specified 

from the four different forcing datasets derived from the analysis experiments Exp0, Exp1, Exp2, 

and Exp3, respectively.  In all the runs, the model surface is defined as land.  The surface 

temperature, pressure, broadband albedo, and sensible and latent heat fluxes are specified from 

the observations.  To prevent serious drift of SCM simulations, a series of 30-hour forecast runs 

is initiated at 11Z every day.  For each forecast, the temperature and moisture are initialized with 

the observations and the model clouds are set to zero at the beginning.  A composite of 6 – 30 

hour forecasts from the series of 30-hour runs is analyzed to reduce model spin-up problems and 

to give time for model clouds to develop.  For convenience in the following discussions, we use 

SCMExp0, SCMExp1, SCMExp2, and SCMExp3 to represent the SCM run with the forcing data 

derived from the experiments Exp0, Exp1, Exp2, and Exp3, respectively. 

 Figure 11 shows the simulated temperature and moisture errors from the SCMExp0 run 

compared to observations.  Results are very similar when the model is driven by the other three 
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 forcing datasets (not shown).  Model errors are typically less than 4 K and 1 g kg
-1

 for most of 

the period except during the strong frontal passage on 19 October, where the model shows a 

large cold bias in the upper troposphere and a large warm bias in the middle and lower 

troposphere.  Note that this is a typical error pattern shown in most SCMs in simulating strong 

frontal cloud systems, including those observed in the middle latitudes [e.g., Xie et al. 2005].  A 

similar error pattern is also seen in the Goddard Institute for Space Studies (GISS) SCM [Del 

Genio et al., 2005] with the forcing data from the control analysis (Exp0) (Audrey Wolf of GISS, 

personal communication). Note that the parameterizations of cloud condensations, cloud 

fraction, and cumulus convection used in the GISS model are significantly different from the 

NCAR model as described in Xie et al. [2005].  This could suggest potential errors in the 

analyzed large-scale forcing in addition to model deficiencies. It is known that subgrid-scale 

dynamical and thermodynamical processes have a large influence on frontal circulations.  These 

subgrid-scale processes cannot be fully described in the large-scale forcing data that are derived 

from only limited sounding stations.  As indicated by Xie et al. [2005], many of the SCM errors 

in simulating frontal systems could be traced to the lack of subgrid-scale dynamical structure in 

the applied forcing fields.   

    Figure 12 displays the SCM-simulated cloud fields from the SCM runs.  In comparison 

with the observations (Figure 5a), it is encouraging to see that the model is able to generally 

capture well the various cloud types observed during M-PACE using all four forcing datasets 

(Figures 12a-d).  For example, the model reproduces the multi-layer clouds on 6-7 October, the 

boundary layer clouds between 8 – 14 October, and the high frontal clouds on 18-19 October as 

shown in Figure 5a.  However, the model largely underestimates the multilayered clouds and 

boundary layer clouds in the observed cloud layer when quantitatively compared to the 

observations.  The model-produced boundary layer cloud bases are lower than the observed.  

This model error is also seen in the simulations of its parent GCM (CAM3) for this case (not 

shown), in which CAM3 was initialized with the NASA global analysis data [Xie et al. 2006b].  

It is worth noting that the cloud base in the ARSCL products is determined by the ARM laser 

ceilometers and micropulse lidars, which are usually insensitive to ice precipitation (if the 

concentration of precipitation particles is not sufficiently large) or clutter and can provide quite 

accurate cloud base measurements [Clothiaux et al., 2000].  The SCM also misses the mid- and 

low-level clouds below 615 hPa on 18 October, which could partly contribute to the warm bias 
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 shown on Oct. 18-19 in Figure 11a due to the lack of cloud radiative cooling.  Another 

interesting feature is that all the runs generate unrealistic high clouds on 7 October.  This is most 

likely due to the quite strong upper level upward motion and cold advection shown in the forcing 

field (Figures 6a-b), which might not be realistic.   

 While the overall structure of the simulated Arctic clouds is very similar in these runs 

regardless of which forcing dataset is used, there are some slight differences among the 

simulations.  One noteworthy feature is that the SCMExp3-predicted low-level clouds for the 

period 8-12 October are too low with the cloud bases almost reaching the surface.  This problem 

is reduced in the other three runs, in which the predicted low-level cloud bases are between 965 

and 915 hPa.  This indicates that including the surface heat fluxes over the ocean part of the 

analysis domain helps lift the low-level model clouds from the surface, which is more realistic.  

It should be noted that this improvement is not a result of using the slightly different forcing 

datasets as shown in Figure 10, but is a result of using larger surface sensible and latent heat 

fluxes to specify the surface conditions in these SCM runs (SCMExp0-2) than in the SCMExp3 

run, in which only the heat fluxes over land are used.  Another notable feature is that SCMExp2 

predicts slightly more clouds than the other three runs, consistent with the stronger upward 

motion in the Exp2 forcing data due to the larger surface precipitation constraint used in the 

analysis. 

 Figures 13a-d compare the SCMExp0-simulated surface precipitation (PREC), cloud 

liquid water path (LWP), TOA outgoing longwave radiative flux (OLR), and surface downward 

shortwave radiative flux with the observations.  Results are very similar for the three other SCM 

runs (not shown).  The temporal correlation between the runs SCMExp1, SCMExp2, SCMExp3 

and the control run SCMExp0 is generally larger than 0.95 for these fields.  In general, the model 

is able to capture the observed surface precipitation, such as the weak precipitation events in the 

early period of the experiment and the strong frontal precipitation on late 19 October.  The model 

also performs a decent job on capturing the observed liquid water path for the period 8-14 

October where boundary layer clouds appeared.  It is noteworthy that almost all the model cloud 

water is in liquid phase and only a small amount of cloud water is in ice phase (the thin solid line 

in Figure 13b).  In contrast, the observed clouds contained a significant amount of ice as 

indicated by the cloud radar, cloud micropulse lidar, and aircraft measurements [McFarquhar et 

al., 2005].  It is seen that the model produces little ice even during the periods when the 
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 multilayered clouds and the high frontal clouds are generated, which leads to a significant 

overestimation of the observed LWP. The model considerably overpredicts TOA outgoing 

longwave radiative flux and the downward surface shortwave radiation in the presence of 

boundary layer clouds, consistent with the underestimation of the low-level clouds.   It is worth 

noting that these model errors revealed from the SCM tests are also seen in its parent GCM runs 

(not shown), suggesting potential model deficiencies in simulating the Arctic mixed-phase 

boundary clouds.   

Table 2 lists the time-mean values of some selected cloud and radiation related fields 

averaged over the period from 17Z 5 October to 14Z 20 October, where the sequential 6 – 30 

hours model forecasts are available.  In the table, LWP is cloud liquid water path, IWP is cloud 

ice water path, OLR is TOA outgoing longwave radiative flux, FSNT is TOA net shortwave 

radiative flux, FSNS is surface net SW radiative flux, FLNS is surface net longwave radiative 

flux, PREC is surface precipitation, and TPW is total precipitable water.  The observed 

precipitation used in deriving the forcing data from Exp2 is listed in parentheses.   Note that 

results from the SCM driven with the forcing data derived from the ECMWF analyses are also 

shown in the table (the last column), which will be discussed in the next section. 

One noteworthy feature in Table 2 is that the NCAR model shows very similar model 

bias in most of the fields regardless of which forcing dataset is used.  For example, all the SCM 

runs (i.e., SCMExp0-3) dramatically overestimate the observed cloud liquid water path (LWP) 

and they all produce very little ice (IWP).  For the radiation field, these runs slightly 

overestimate the observed TOA shortwave radiation (FSNT) by around 1.4–2.3 Wm
-2

 but largely 

overpredict the net surface SW radiation (FSNS) by up to 6.8 Wm
-2

.  The latter is associated with 

the underestimation of the boundary clouds.  The underestimation of the observed low-level 

clouds also leads to an overprediction of OLR at TOA and an under-prediction of downward LW 

radiation at the surface. The latter results in a larger net surface longwave radiative cooling 

(FLNS) compared to observation.  Note that the model-predicted surface upwelling longwave 

radiation is close to the observations because the model surface temperature is specified from the 

observations.  It is interesting to see that SCMExp3 produces smaller errors in the surface 

downward LW radiation than other runs.  This is due to the lower cloud base produced in the 

SCMExp3 run.  All the runs reproduce well the observed surface precipitation (PREC).  As 

expected, SCMExp2 produces larger precipitation than other runs because of the stronger 
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 upward motion in the forcing data it used.  SCMExp1 produces larger precipitation in 

comparison with the control case SCMExp0, presumably due to the higher temporal variability 

in the derived forcing fields as noted in Figure 10a.   All the runs just slightly underestimate the 

observed column total precipitable water (TPW).   

The above discussions indicate that the SCM driven with the forcing data derived in this 

study can reasonably generate the various cloud types in the observed Arctic cloud systems and 

the associated surface precipitation events during the M-PACE period.  Several major model 

errors in simulating the Arctic cloud systems can be detected despite the uncertainties in the 

derived forcing data.   This provides confidence in using the analyzed forcing data for more in-

depth SCM and CRM study of the Arctic clouds.    

It should be noted that these results are only from the NCAR SCAM3 model tests.  Other 

SCMs might respond to the uncertainties in the forcing data differently.  Also our focus here is to 

demonstrate how sensitive SCM simulations are to the uncertainties in the forcing data.  A more 

in-depth analysis is needed to fully interpret model results and understand the causes of those 

model errors, which is the subject of a separate study.    

 

6.  Forcing data derived from the ECMWF analyses 

It is always difficult to obtain comprehensive sounding data from a well-defined 

sounding array for the purpose of deriving the large-scale forcing fields, especially in the Arctic.  

Moreover, it is almost impossible to have such soundings for a period that is longer than a few 

months.  However, a long-term continuous forcing dataset is necessary for SCM/CRM modelers 

to statistically evaluate their model performance.  To develop such a long-term forcing dataset, 

NWP model analyses have to be used.  Given the good quality of the ECMWF analyses as 

shown in Figure 2 and also in Xie et al. [2006a], we explore the possibility of using the ECMWF 

analyses to derive the large-scale forcing over the Arctic region in this section.  As discussed by 

Xie et al. [2003] and Morrison and Pinto [2004], the forcing data directly obtained from the 

ECMWF model contain large errors.  Similar problems are found in other NWP model-derived 

forcing data, such as in those generated from the NOAA rapid update cycle (RUC) model 

forecast analysis data [Xie et al., 2004].  Several approaches were proposed to reduce errors in 

the NWP model-derived forcing data by using available observations to constrain the NWP data 

[e.g., Xie et al., 2004; Morrison and Pinto, 2004].  In this study, we use the method described in 
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 Xie et al. [2004] to derive the large-scale forcing data from the ECMWF analyses for the M-

PACE period.  In this approach, the M-PACE surface and TOA fluxes are used as the constraints 

to adjust the ECMWF analysis data so that they are forced to balance the observed column 

budgets of mass, heat, moisture, and momentum by using the variational analysis method.  For 

convenience in the following discussions, we use “ECMWF forcing” to refer to the forcing 

derived from the ECMWF analyses and “analyzed forcing” to represent the forcing derived from 

the M-PACE sounding data. 

Figures 14a-b shows the derived large-scale omega field from the ECMWF analyses and 

the difference from that generated in the control analysis (Exp0).  It is encouraging to see that the 

ECMWF-produced omega shows a very similar distribution compared to the analyzed (Figure 

6a).  However, the vertical motion in the ECMWF model is weaker and smoother than that in the 

analysis, reflecting more homogenous horizontal wind fields in the model than those in the 

sounding data.  The difference between these two forcing datasets (Figure 14b) is much larger 

than that due to the uncertainties in the sounding measurements and surface constraints as shown 

in Figures 10d-f.  This indicates that the derived forcing fields are sensitive to the small 

differences between the ECMWF model analysis and the observations in these state variables at 

individual stations, although the magnitude of the RMS errors in the ECMWF analysis data is 

small as shown in Figure 2.  To correctly capture the magnitude and temporal and spatial 

variability of the large-scale forcing fields, measurements from a well-defined sounding array are 

necessary.  

 To examine how SCMs respond to the ECMWF forcing, we ran the SCAM3 with the 

ECMWF forcing in the same way as we did for the SCM tests with the analyzed forcing datasets 

in Section 5.  For convenience in this discussion, we use SCMEC to represent this SCM run.  

Simulation results show that SCMEC produces very similar and comparable temperature and 

moisture errors when compared to the SCM forced with the analyzed forcings (not shown).  

However, some noticeable differences are seen in the simulated cloud field.  Figure 15 shows the 

clouds simulated by SCMEC.  When compared to Figure 12, it is seen that although the overall 

structure of the model-produced clouds is similar between the SCMEC run and the SCM runs 

with the analyzed forcing, differences are noticed.  For example, SCMEC produces less mid-

level cloud for the multilayered cloud system on 6-7 October and it also misses the deep upper-

level cloud on 18 October in comparison with the SCM runs with the analyzed forcing datasets.   
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 It is interesting to see that the spurious upper-level cloud shown on 7 October in Figure 12 is not 

present in Figure 15.  This is because the ECMWF forcing does not have the upward motion on 7 

October in the upper troposphere as shown in the analyzed forcing field (Figure 6a).    

The time-averaged values of the selected cloud and radiation related fields from SCMEC 

are listed in the last column in Table 2.  In general, the model errors shown in the runs with the 

analyzed forcing datasets are also seen in SCMEC.  For example, the model with the ECMWF 

forcing also produces too much cloud liquid water.  It overestimates OLR and net SW at TOA 

and overestimates net LW cooling and SW heating at the surface.  The surface precipitation and 

total precipitable water are well reproduced.   In general, SCMEC shows larger errors than the 

runs driven by the analyzed forcing.  Results from SCMEC are less correlated to those from 

SCMExp0 compared to those runs discussed in Section 5.  The temporal correlation coefficient 

for some fields, such as OLR and FLNS, is just around 0.5.  This indicates that the SCM driven 

with the ECMWF forcing may statistically detect the major model errors as revealed by the SCM 

using the analyzed forcing, but noticeable differences exist in the time evolution of these fields 

simulated by these two types of forcing datasets.  With further improvements in both quality and 

data density of surface measurements over the Arctic region in the future, it may be possible for 

us to derive a long-term multi-year forcing data from ECMWF analyses over the NSA region.    

 

7.  Summary and discussions 

Developing large-scale SCM/CRM forcing data from observations in the high latitudes 

has been impossible in the past, owing to the lack of a suitable sounding array.  The situation is 

improving with the ARM Mixed-Phase Arctic Cloud Experiment that was recently conducted 

over the North Slope of Alaska in October 2004.  In this field campaign, a sounding array of four 

stations launched sounding balloons four times per day to measure the time evolution of the 

Arctic atmosphere and allow for calculation of the large-scale advection of temperature and 

moisture.   In this study, we have used the objective analysis method of Zhang and Lin [1997] to 

derive the highly desired forcing data in the Arctic region for the first time based on the M-

PACE observations.  The technical details of the objective analysis and several important 

technical and scientific issues related to the analysis have been discussed in this paper.  

It has been shown that the analyzed large-scale vertical velocity and advective tendencies 

of temperature and moisture describe the dynamic and thermodynamic structure of the observed 
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 Arctic cloud systems reasonably well.  For the observed multilayered clouds and boundary layer 

clouds, the analyzed data typically show strong downward motion above cloud top and relatively 

weak upward motion at low levels.  The downward motion is much stronger and extends to 

much lower levels for the period where only low-level clouds were observed.  Generally there is 

warm temperature advection above cloud top and cold advection at low levels associated with 

the downward and upward motions, respectively.  The analyzed moisture forcing indicates quite 

strong moisture convergence at middle levels prior to the formation of multilayered clouds and it 

generally shows moisture divergence for most of the period where boundary layer clouds 

occurred, suggesting that the observed boundary layer clouds formed over the nearby oceans and 

advected into the ARM NSA site.   

It is noted that there are only three surface observation stations at the NSA site.   The lack 

of dense surface observations could affect the accuracy of the surface domain-averaged 

quantities.  Using the ECMWF 0.5 x 0.5 model output data, we have shown that this could 

introduce an uncertainty of more than 20% in the domain-averaged surface precipitation and 

sensible and latent heat fluxes.  Increasing the density of surface observation networks is 

important to improve the domain-average quantities and thereby improving the analyzed large-

scale forcing fields. 

To estimate the accuracy of the analyzed forcing fields, we have examined the sensitivity 

of the forcing data to uncertainties in the upper-air data, surface precipitation, and sensible and 

latent heat fluxes.  It has been shown that the analyzed forcing data derived from these sensitivity 

tests exhibit very similar dynamic and thermodynamic structures as shown in the control 

analysis.  The largest sensitivity of the analyzed forcing is to uncertainties in the surface 

precipitation constraint, consistent with Zhang et al. [2001].  Given the large uncertainty in 

current surface precipitation measurements at the NSA site and its importance in the analyzed 

forcing fields, significant efforts need to be given to improve the quality and data density of 

surface precipitation measurements in the future.   

The NCAR CAM3 single column model has been used to examine how the uncertainties 

in the forcing data affect model simulations.  It has been shown that the SCM driven with the 

analyzed forcing data is able to capture qualitatively the bulk features of the Arctic cloud 

systems observed during M-PACE.   Similar results are produced in these SCM tests regardless 

of which forcing data are used, indicating that major model biases can be detected using the 
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 analyzed forcing data developed in this study.  It is worth noting that most model errors 

revealed in the SCM tests are also seen in its parent GCM simulations for the M-PACE case, as 

found in a separate study [Xie et al. 2006b].  These encouraging results provide confidence in 

using the analyzed M-PACE forcing data for a more in-depth SCM/CRM study of the Arctic 

clouds.   

To explore the possibility of using NWP data to derive the large-scale forcing over the 

Arctic region, we have used the ECMWF analyses to replace the M-PACE soundings in the data 

analysis.  The ECMWF analyses are adjusted to balance the M-PACE observed column-

integrated budgets of mass, heat, moisture, and momentum through the variational analysis 

approach.  It has been shown that the forcing data derived from the ECMWF analyses display 

similar temporal and vertical structures compared to those derived from the M-PACE soundings 

but the ECMWF forcing fields are generally weaker and smoother.  The NCAR SCM driven by 

the ECMWF forcing is able to produce similar simulations in most atmospheric fields as those 

obtained in the SCM driven with the analyzed forcing but with larger errors.  Major model errors 

related to clouds can be detected in a statistical way using the ECMWF forcing, such as the 

substantial overestimation of the observed cloud liquid water.  This indicates that it may be 

possible for us to develop a long-term continuous forcing dataset from ECMWF analyses in the 

high latitudes for statistical study with further improvements of surface measurements in those 

regions in the future. 

It has been shown that the data availability in M-PACE and inevitable errors in the data 

measurements largely limit the accuracy of current analyzed products.  Improvements in both 

data quality and density of field measurements in the future are critical to improve the accuracy 

of the derived large-scale forcing data.  Developing an ensemble of forcing datasets based on 

potential uncertainties in upper-air data and column constraints might help address the 

uncertainty in the analyzed forcing data.   In addition, it also allows modelers to run their SCMs 

using an ensemble single column modeling approach as suggested in Hume and Jakob [2005], in 

order to reduce the sensitivity of SCMs to uncertainties in the forcing data.   

It should be noted that this study has only tested the forcing datasets in one SCM.  The 

datasets need to be further evaluated using different SCMs and CRMs since different models 

may respond the uncertainties in the forcing data in different ways.  This is a subject of future 

work.   The forcing data developed from the control run in this study are being used in the ARM 
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 Cloud Parameterization and Modeling Working Group for a modeling study of the Arctic 

mixed-phase boundary layer clouds during M-PACE.  The data can be obtained from the 

website: http://science.arm.gov/wg/cpm/scm/scmic5/index.html.  This paper has attempted to 

address several important issues related to the analyzed data developed in this study and it should 

be useful for modelers to use the data and interpret their model results.  It also provides 

information that could be used to guide future field experiments in the high latitudes. 

  

http://science.arm.gov/wg/cpm/scm/scmic5/index.html
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Figure Captions 

Figure 1. Locations of the ARM M-PACE sounding network and the analysis grid points.  The 

sounding stations are represented by (*), the six analysis grid points are displayed by 

(), and the ECMWF model output grid points are “+” with latitude and longitude 

lines indicated.  The thin solid line represents the coastline. 

Figure 2. The root-mean square errors of the ECMWF analysis (solid line) and the ETA analysis 

(dashed line) from the M-PACE observations at Barrow: (a) horizontal U wind 

component (m s
-1

), (b) horizontal V wind component (m s
-1

), (c) temperature (K), and 

(d) relative humidity (%).   

Figure 3. The time series of (a) surface precipitation (mm day
-1

), (b) surface net radiation (W m
-

2
), (c) sensible heat flux (W m

-2
), and (d) latent heat flux (W m

-2
) from the ECMWF 

girded data during M-PACE.  The solid line represents an average over all the land 

grid points within the analysis domain while the dashed line represents an average 

only over the single land grid points that are close to Barrow, Atqasuk, and Oliktok 

Point, respectively.  The values shown behind the legends are the mean values 

averaged over the entire period.   

Figure 4. Time-pressure cross sections of analyzed large-scale state fields: (a) horizontal U wind 

component (m s
-1

), (b) horizontal V wind component (m s
-1

), (c) temperature (c), and 

(d) water vapor mixing ratio (g kg
-1

).  In (a) and (b) the contour interval is 5 and 

contours less than 0 are drawn with dashed line.  In (c) the contour interval is 5 and in 

(d) the contour intervals are 0.1, 0.3, 0.5, 1, 1.5, 2, 2.5, and 3.  

Figure 5. (a) The time-pressure cross sections of the ARM ARSCL clouds (%) at Barrow during 

M-PACE (b) the domain-averaged surface precipitation (mm day
-1

).  In (b) the solid 

line represents the precipitation used in the control case Exp0 and the dashed line 

denotes the precipitation used in the sensitivity test Exp2.  These experiments are 

described in Table 1. 

Figure 6. Time-pressure cross sections of analyzed large-scale forcing fields: (a) vertical 

velocity (hPa hr
-1

), (b) total advective tendency of temperature (K day
-1

), and (c) total 

advective tendency of water vapor mixing ratio (g kg
-1

 day
-1

).     
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 Figure 7. Time series of the components in the dry static energy budget: (a) heat storage, (b) 

horizontal heat transport, (c) latent heat associated with precipitation, (d) sensible heat, 

and (e) column radiation.  The units are W m
-2

. 

Figure 8. Time series of the components in the moisture budget: (a) moisture storage, (b) 

horizontal moisture transport, (c) surface precipitation, and (d) surface evaporation.  

The units are mm day
-1

.  

Figure 9. Time series of the domain-averaged (a) sensible heat flux (W m
-2

) and (b) latent heat 

flux (W m
-2

) during M-PACE.  In the figure, solid lines represent the fluxes used in 

the control case Exp0 and dotted lines denote the fluxes used in the sensitivity test 

Exp3.  

Figure 10. Time-pressure cross sections of analyzed vertical velocity fields from the sensitivity 

tests Exp1, Exp2, and Exp3 and their difference from the control case Exp0.  The unit 

is hPa hr
-1

. 

Figure 11. The NCAR SCM-simulated temperature and moisture errors compared to the M-

PACE observations.  (a): temperature errors (K).  (b): moisture errors (g kg
-1

).   

Figure 12. Time-pressure distributions of the NCAR SCM-simulated clouds and their difference 

from the ARM ARSCL clouds.  The unit is %.  (a) - (d) show the clouds produced by 

the SCMExp0, SCMExp1, SCMExp2, and SCMExp3, respectively.   

Figure 13.  Comparison of the NCAR SCM-produced (a) surface precipitation (mm day
-1

), (b) 

cloud liquid water path (g m
-2

), (c) TOA outgoing longwave radiation (W m
-2

), and (d) 

surface downward shortwave radiation (W m
-2

), with the M-PACE observations.  The 

forcing data are from the control analysis Exp0.  For comparison, the model-produced 

ice water path (g m
-2

) is also shown in (b) by the thin solid line. 

Figure 14. Same as Figure 10 except for the omega field derived from the ECMWF analyses.  

Figure 15. Same as Figure 12 except for the results using the forcing data derived from the 

ECMWF analyses. 
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 Table 1.  Description of the sensitivity tests conducted in this study 

Exp0 Control case 

Exp1 Same as Exp0 except the upper-air data are randomly perturbed. 

Exp2 Same as Exp0 except for using equal weights when merging the ARM and 

NWS precipitation. This results in a consistent increase of surface 

precipitation for each precipitation event because the ARM-observed 

precipitation is significantly larger than the NWS observed. 

Exp3 Same as Exp0 except for using surface sensible and latent heat fluxes over 

land only.  This results in a significant decrease of the fluxes for the period 5-

13 October. 
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 Table 2. Comparison of SCM simulations to M-PACE observations for selected cloud and 

radiation related fields.  Values in the table are an average over the period from 17Z 5 October to 

14Z 20 October.  See the text for variable definitions. 

 OBS SCMExp0 SCMExp1 SCMExp2 SCMExp3 SCMEC 

LWP (g m
-2

) 72.0 141.1 145.1 168.4 160.3 148.5 

IWP  (g m
-2

) N/A 13.4 14.0 18.2 15.1 10.65 

OLR  (W m
-2

) 204.2 212.9 212.4 210.2 211.7 217.2 

FSNT (W m
-2

) 25.29 27.56 27.0 26.84 26.73 28.1 

FSNS (W m
-2

) 3.78 10.6 10.0 9.88 9.68 10.5 

FLNS (W m
-2

) -18.3 -31.4 -30.6 -28.3 -22.3 -31.3 

PREC (mm d
-1

) 0.76 (1.19) 0.75 0.79  (1.05) 0.77 0.69 

TPW 7.67 7.35 7.36 7.52 7.34 7.17 
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